To view the lecture program please click here

Back to overview

Poster

WEB 3D structured electrodes for Li-ion batteries using open porous metal foams as current collector for high energy application

Thursday (25.06.2020)
09:46 - 09:46 Poster Room
Part of:
Line-Up:
- Poster *web*Smoothing of additive manufactured parts using ns-pulsed laser source 1 Dipl.-Ing. Florian Kuisat
- Poster TBA -
- Poster *web*Combustion Synthesis of High Entropy Alloys thin films 1 Dr. Anni Wang
- Poster *web*Surface macro-smoothing and micro-structuring of additive manufactured components by using DLIP technique for controlling wetting characteristics 1 Dipl.-Ing. Florian Kuisat
- Poster *web*Influence of embedding materials on heat transfer and ignition transfer time in heterogeneous reactive material system 1 Mostafa Baloochi
- Poster TBA -
- Poster *web*Self reactive joining process with multilayer foils in lap joint configuration 1 Marcus Glaser
- Poster *web*Thermodynamics and kinetics of phase formation in magnetron-sputtered Ni/Al multilayer thin films with nanoscale morphology 1 Sascha Sebastian Riegler
- Poster *web*Femtosecond laser approach to cut Ni/Al reactive foils without ignition of a self-propagation reaction 1 Maria Amelia Martins
- Poster *web*Effect of preparation angle on atom probe tomography of reactive multilayers 1 Christian Schäfer
- Poster *web*Reactive Ni/Al multilayers with 3D Morphologies 1 Konrad Jaekel
- Poster *web*Synchrotron radiation X-ray powder diffraction and magnetometric study of natural and synthetic terms of the stannite-kesterite pseudobinary system in the low temperature regime (5-275 K) 1 Dr. Francesco Di Benedetto
- Poster *web*Coating and Drying of Sodium-Ion-Battery Electrodes 1 Julian Klemens
- Poster *web*Analytical prediction model for Direct Laser Interference Patterning 1 Dr. Bogdan Voisiat
- Poster *web*CFD Analysis of joining processes using reactive multilayers on native surface morphologies of microelectronic substrates 1 Erik Wiss
- Poster *web*Top-Hat profile in Direct Laser Interference Patterning: Is it worth it? 1 Mikhael El-Khoury
- Poster *web*Laser-based (“2D”) surface treatment of lithium-ion battery electrodes to improve the rate capability 1 Jens Sandherr
- Poster *web*Microstructure investigation of superconducting NbN thin films on copper 1 Dipl.-Ing. Ying Li
- Poster TBA -
- Poster *web*Laser functionalized PEEK-based coating systems to minimize friction and wear 1 Dr. Tim Kunze
- Poster *web*Structure and Dynamics in a Layered Na-ion Battery Cathode 1 Euan Bassey
- Poster *web*Electrode-Processing using porous nano-structured Na3V2(PO4)3 (NVP) for Sodium-Ion Batteries 1 Luca Schneider
- Poster TBA -
- Poster *web*Experimental Approach for Phase Diagram determination of Li alloys 1 Joel Fels
- Poster *web*Process Integration of Few-Layer MoS2 into a-Si:H Heterojunction pin-Photodiodes for extended Infrared Detection 1 Charles Otieno Ogolla
- Poster *web*Ti3SiC2- and Ti3AlC2-based ceramics synthesis by spark plasma sintering of preceramic paper 1 Elizaveta Sedanova
- Poster *web*Overheating microstructural study of nickel-based superalloys from turbine blades of aircraft engines 1 Dr. Ana Pastor
- Poster *web*Electrochemical thermodynamics of Lithium Batteries and their materials 1 Prof. Dr. Hans Jürgen Seifert
- Poster *web*Corrosion Analysis of a 316L Stainless Steel Gas Outlet Sealed with a Copper Ring Used in the CO2 Methanation Process 1 Ananya Prechavut
- Poster *web*Self-propagating reaction of structured reactive Al/Ni multilayers 1 Yesenia Sauni
- Poster *web*3D structured electrodes for Li-ion batteries using open porous metal foams as current collector for high energy application 1 Jonas Oehm
- Poster *web*Novel air stable single source precursor for homogeneous crystalline TiS2 thin films 1 Anja Sutorius
- Poster *web*Synthesis of nickel-copper composite with controllable nanostructure through facile solvent control as positive electrode for high-performance supercapacitors 1 Dr. Damin Lee
- Poster *web*Towards understanding response generation in conductometric gas sensors 1 Stefan Kucharski
- Poster Effects of 3D electrode design on high-energy silicon-graphite anode materials 1 Yijing Zheng

Session -F: Functional Materials, Surfaces, and Devices
Belongs to:
Topic X: Poster Session


The demand for Li-ion batteries with ever increasing energy and power densities is not only for automotive applications. Inter alia, high energy density and mechanical stability together with small electrode and cell dimensions are required for medical technology systems or wearable devices. Thus, increasing the areal loading of electrodes is necessary to meet the demands. However, layer thickness and compaction of conventional electrodes cannot be increased arbitrarily since the underlying transport mechanisms as Li-ion and electron transport are limited during charge and discharge. This results in a strong fading of energy and power density at higher current rates, which in turn are necessary for fast charging. A 3D structured electrode design using a metal foam as current collector is regarded to be an alternative approach to overcome these issues.

 

In comparison to conventional electrodes using a layer of active mass on top of a current collector foil, 3D structured electrodes with an open-porous metal foam as current collector exhibit a 3D connected electronic network within the active material. This shortens the transport pathways of the electrons and lowers the intrinsic resistance of the electrode [1]. Additionally, the high specific surface of the metal foam and consequently large contact area between current collector and active mass leads to an improved charge transfer behavior and Li-ion diffusion [2, 3].

 

In this study, we investigated different infiltration methods to fabricate NMC based cathodes. A vacuum supported infiltration process will be demonstrated that enables a high active mass loading avoiding cavities after infiltration even for foams with a thickness of up to 1000 µm. We present a detailed microstructure analysis of the foam-based electrodes focusing on (i) the homogeneity of the infiltrated active mass into the open-porous foam structure (ii) the adhesion of the active mass to the metal structure and (iii) the electrolyte accessibility depending on the degree of compaction after drying of the active mass. Therefore, we carried out computer tomography and microscopy analyses of the electrodes. The electrochemical rate capability behavior are finally corresponded to the results of the microstructure analysis.

 

References:

[1] H. Abe et al., J. Power Sources 334 (2016) 78-85

[2] M. Yao et al., J. Power Sources 173 (2007) 545-549

[3] G. F. Yang, K. Y. Song, S. K. Joo, J. Mater. Chem. A, 2 (2014) 19648 - 19652

Speaker:
Jonas Oehm
Aalen University of Applied Sciences - Technology and Economics
Additional Authors:
  • Marco Grupp
    Aalen University of Applied Sciences - Technology and Economics
  • Prof. Dr. Volker Knoblauch
    Aalen University of Applied Sciences - Technology and Economics
  • Veit Steinbauer
    Hochschule Aalen - Technik und Wirtschaft
  • Prof. Dr. Marc Kamlah
    Karlsruher Institut für Technologie (KIT)